Rule Set Based Access Control (RSBAC)

Amon Ott

Email: ao@Qrsbac.org
WWW: http://www.rsbac.org

Abstract

The Rule Set Based Access Control (RSBAC) sys-
tem is an open source extension to current Linux
kernels, which has been continuously developed for
several years.

It was designed according to the Generalized
Framework for Access Control (GFAC) to overcome
the deficiencies of access control in standard *nix sys-
tems, and to make a flexible combination of security
models as well as proper access logging possible.

Access control is devided into enforcement, deci-
sion and data structures, and all access modes are
grouped into abstract request types. This makes the
framework and the existing model implementations
easily portable to other operation systems.

Among the nine included access control models are
well known ones, like MAC/Bell-LaPadula, as well as
new models, which have been specially designed for
*nix needs.

Installation requires a kernel patch, RSBAC config-
uration and a recompile. The complete set of admin-
istration tools contains a range of menues for most
tasks.

Practical experience shows the system to be fast
and stable for production use, what is one reason for
its growing acceptance. There are already two Linux
distributions with RSBAC included.

1 Introduction

1.1 History

The RSBAC project has been started as my mas-
ter thesis in November 1996 at Hamburg University,
which lasted a full year until November 1997. The
first public version 0.9 for Linux kernel 2.0.30 was
published on January, 9, 1998.

As of 27th of July, the current stable version is
1.1.1, which supports kernels 2.2.18/19 and 2.4.2-7.

Pre-version 1.1.2-pre9 has been released, and 1.1.2-
final will certainly be available when this paper is
presented.

The next major release 1.2.0 will contain a lot of
changes, e.g the first extension of the set of request

types.

1.2 Motivation

Tt is well known that the classic *nix style access con-
trol is insecure. For me, there are three major rea-
sons:

1. Small granularity: All you have are the access
modes read, write and execute, set for the file
or dir owner, the file’s assigned group and all
others. In very many cases, this is barely enough
for secure administration.

2. Discrete control: You have to put trust into
all users, who handle sensitive or critical data,
that they administrate access control accord-
ingly. Due to their lack of personal group man-
agement, they can hardly do proper access con-
trol setups.

Also, all discrete access control is like an invita-
tion to trojans and viruses, who can do anything
the respective user is allowed to do.

3. Superuser root - the worst of these three prob-
lems: root has full access to everything, even the
kernel memory, and is too often needed. Too
much software has to start or even run under
root account, e.g. many network daemons.

Naturally, there are loads of exploits through this
dangerous account.

1.3 Design Goals

The RSBAC system has been designed to meet the
following items:

Page 1

e Provide better access control models for different
administration goals.

e Allow flexible selection and combination of sev-
eral independent models within a generic frame-
work.

e Be easily portable.

e Encapsulate as many parts as possible.
o Be extensible.

e Be filesystem independent

e Become a real, stable, usable and fast kernel ex-
tension.

e Target at many Orange Book / B1 requirements.

2 Overview of RSBAC

2.1 GFAC based

The RSBAC system is based on the Generalized
Framework for Access Control (GFAC) by Marshall
Abrams and Leonard La Padula, which describes a
general framework approach to separate access con-
trol between enforcement, decision, access control
data and authorities, who are allowed to modify that
data.

The original design followed the suggestions in
[LaPadula95] about how to implement GFAC in a
*nix system and implemented some access control
models briefly described there, namely MAC, FC
and SIM. The MAC model implementation has been
changed a lot since then.

Several publications already cover certain aspects
of the whole RSBAC system, which you can download
from the RSBAC documentation page at [RSBAC].

All code is published under GNU Publishing Li-
cense and can also be downloaded from there.

2.2 Key Features

RSBAC has a flexible structure due to its separa-
tion between enforcement (Access Control Enforce-
ment Facility, AEF), decision (Access Control Deci-
sion Facility, ADF) and data (Access Control Data,
ACI). Because of its request abstraction, only AEF
and parts of ACI are operation system dependent.
The ADF, which contains all model implementations,
should mostly need a recompile to work on other *nix
style operation systems.

The framework supports almost any type of ac-
cess control model. The model combination in ADF

requires a metapolicy, which restrictively decides in
cases of contradiction between model decisions.
Through the Runtime Module Registration facility
(REG), decision modules as well as system calls or
persistent generic lists can be added or removed at
runtime, e.g. from a Loadable Kernel Module (LKM).
As a very important part, there is also a pow-
erful logging system. Whether a decision is to be
logged depends upon the request type and the deci-
sion, the user ID, the program running and the ob-
ject that shall be accessed. Logging can be done with
pseudonyms, thus providing some user privacy.

2.3 RSBAC in the wild

The RSBAC system has been in stable production
use since March 2000. It supports all current Linux
kernels from the 2.2 and 2.4 series.

Downloads and feedback are constantly increasing,
and there are even two Linux distributions running
with RSBAC kernels, ALTLinux Castle and Kaladix.

3 Architecture and Implemen-
tation of the Framework

3.1 Subjects, Objects and Requests

In RSBAC, subjects are defined as processes acting
on behalf of user IDs. The following object types
(here named as target types) are defined:

e FILE

¢ DIR

e FIFO (also known as named pipe)

e SYMLINK

e DEV (devices by block/char and major:minor)
e IPC (Inter Process Communication)

e SCD (System Control Data)

¢ USER

¢ PROCESS

e NONE (no object associated with this request)

Access modes are grouped into abstract request
types. Whenever a subject wants to access an ob-
ject, the respective request call with parameters re-
quest type, subject, object and attribute data is is-
sued. One system call can lead to several request
calls, e.g. sys_open can lead to SEARCH, CREATE,
TRUNCATE and all OPEN request types.

Page 2

3.2 List of Requests with Targets

The following request types with respective target
types are defined:

e R_ADD_TO_KERNEL: NONE
e R_ALTER: IPC
¢ R_APPEND_OPEN: FILE, FIFO, DEV, IPC

e R_.CHANGE_.GROUP: FILE, DIR, FIFO, IPC,
USER, PROCESS, NONE

e R_.CHANGE_OWNER: FILE, DIR, FIFO, IPC,
PROCESS, NONE

e R_CHDIR: DIR

e R_.CLONE: PROCESS

e R_CLOSE: FILE, DIR, FIFO, DEV, IPC
e R_.CREATE: DIR (where), IPC

e R.DELETE: FILE, DIR, FIFO, IPC

e R_EEXECUTE: FILE

e R.GET_PERMISSIONS_DATA: FILE, DIR,
FIFO, IPC, SCD

e R.GET_STATUS.DATA: FILE, DIR, FIFO,
SYMLINK, IPC, SCD

e R LINK_HARD: FILE, FIFO
¢ R MODIFY_ACCESS_DATA: FILE, DIR, FIFO
e R_.MODIFY_ATTRIBUTE: All target types

e R.MODIFY_PERMISSIONS_DATA: FILE,
DIR, FIFO, IPC, SCD, NONE

¢ R MODIFY_SYSTEM_DATA: SCD
¢ R MOUNT: DIR, DEV

e RREAD: DIR, SYMLINK, IPC (optional:
FILE, FIFO, DEV, IPC-sock)

¢ R READ_ATTRIBUTE: All target types
¢ R READ_OPEN: FILE, FIFO, DEV, IPC

¢ R READ_WRITE_OPEN: FILE, FIFO, DEV,
IPC

e R.REMOVE_FROM_KERNEL: NONE
¢ R.RENAME: FILE, DIR, FIFO
e R.SEARCH: DIR, FIFO

e R_SEND_SIGNAL: PROCESS

e R.SHUTDOWN: NONE

e R.SWITCH.LOG: NONE

e R.SWITCH.MODULE: NONE
e R.TERMINATE: PROCESS

¢ R.TRACE: PROCESS

e R.TRUNCATE: FILE

e R.UMOUNT: DIR, DEV, NONE

e R_.WRITE: DIR, SCD (optional: FILE, FIFO,
DEV, IPC-sock)

e R_WRITE_OPEN: FILE, FIFO, DEV, IPC

Please note that target type NONE is internally con-
verted into SCD target other’ by RC and ACL model.

3.3 Architectural Diagram

Figure 1 on page 4 shows the RSBAC implementation
in the Linux kernel.

A typical system call interception (AEF compo-
nent) places two calls to ADF: a request for deci-
sion and, if access has been granted and the system
call functionality has been successfully performed, a
notification. ACI data is only updated on the noti-
fication call, because the system call might fail from
other reasons.

3.4 Module Registration (REG)

Additional decision functions and system calls can be
added at runtime through the Module Registration
facility (REG). This allows for new models to be im-
plemented as a kernel module.

Decision and notification functions, system calls
and generic persistent lists can be added or removed
whenever necessary. All such registrations are con-
trolled with handles private to the registrant to pro-
tect against unwanted modification. Also, every
Linux kernel module can avoid unloading with a mod-
ule use count.

To show most REG features, three sample modules
are included in the installation tarball.

4 Implemented Models

A range of models have already been implemented
within the RSBAC framework. They can be selected
at kernel configuration and then be combined for an
individual protection profile.

Page 3

Suhject | process
...
8. gronat ! reguiesiz access
ar dery {systam call)
FCCErS

AEF
(Access Control Enforcement
Faciiity)

|Dpen systerm call function |

|create systern call function|

L decision

||:|ther systern call funu::t||:|ns|

3 reguest for decisions
7. notification

@ ackanowledoement

ADF
{Access Confral Decision
Facilify)

Privacy Policy Rules

Bell LaFadula Fules

RT Policy Fules

4 rgferto ACT
& uprdate

10 aceess M@éy
Object | file, dir, dev, ACI
scd, ipc :

{Access Contral Information)

Figure 1: RSBAC Architecture

4.1 MAC

Mandatory Access Control (MAC) stands for the Bell
— La Padula model implementation. There are 253
classification levels and 64 categories available.

For those programs that are not MAC aware — like
most *nix programs —, current security levels can be
automatically adjusted as necessary, but within read
and write level boundaries.

4.2 FC

The simple Functional Control (FC) role model de-
fines three roles, 'Normal User’, ’Security Officer’ and
'System Administrator’, and three types, 'General’,
"Security’, System’.

Normal users may access general data, security of-
ficers general and security data and system adminis-
trators general and system data.

4.3 SIM

The Security Information Modification (SIM) model
only allows write access to objects marked as ’Secu-
rity Data’ for users marked as ’Security Officers’.

4.4 PM

Simone Fischer-Hiibner’s complex Privacy Model
(PM) can control the processing of personal data in
accordance to the EU privacy laws.

This model defines object classes with sets of pur-
poses, tasks, necessary accesses and much more.
Please see e.g. [FiHue97] or [FiHueOtt98] for more
information.

4.5 MS

Malware Scanning (MS) is not an access control
model — it is an on-access malware scanner proto-
type in the kernel, which monitors file and socket
read accesses. For performance, file scanning results
are stored persistently (with version) and reset on all
write accesses. Due to its prototype status, it only
detects a few DOS and Linux viruses.

The MS design and module are described in
[OttFiSwigg]

4.6 FF

The File Flags module provides inheritable flags for
FILE, DIR, FIFO and SYMLINK objects.

Page 4

Current flags are: read_only, execute_only,
search_only, write_only, secure_delete, no_execute,
no_delete_or_rename (not inherited), append_only
and add.inherited (not inherited itself). The
add-inherited flag denotes, whether the flag values of
an object’s parent object are added to its own flags.

4.7 AUTH

The authentication model (AUTH) restricts the capa-
bility of a process to CHANGE_.OWNER. Only user
IDs a process has an AUTH capability for can be
reached, all other setuid requests are denied. AUTH
thus controls, under which user IDs programs can be
executed, and easily restricts login paths to the sys-
tem.

AUTH capabilities can be set at the program file
and are then inherited at execution, or they can be
set directly on the process by other processes, which
have a special flag auth_may_set_cap set. Addition-
ally, there is a shortcut flag auth_may_setuid, which
turns the capability check for this program off.

The capability setting scheme makes a daemon
based authentication enforcable: an authentication
daemon can set only those capabilities for a process,
which the process has successfully authenticated for.

As an important base model, AUTH is the only
model which is not independent of all others: all
changes to AUTH settings are controlled by requests
to ADF.

4.8 RC

The Role Compatibility model (RC) defines 64 roles
and 64 types per target type. For ease of use, filesys-
tem targets (FILE, DIR, FIFO, SYMLINK) share the
same RC type set. For each pair of role and type, a
compatibility vector of request types is defined. A
subject may access an object with a request type, if
the subject-object compatibility vector has the bit for
this request set.

To allow control of requests with target NONE,
those requests are checked against the SCD target
‘other’.

Every user gets one default role assigned. Addi-
tional to types, roles can also be compatible with
other roles, which means, a process running with a
role can change to all compatible roles. Role compat-
ibility thus defines a chain, possibly a circle, of roles
that can be reached from a certain role.

Roles can not only be assigned to users, but also to
program files. This can be done temporarily from ex-
ecution start to the first setuid, via the initial_role at-
tribute, or permanently with the force_role attribute.

The latter also controls some special cases for role
assignments. Initial roles are typically used for lo-
gin programs, forced roles for administration tools or
daemons.

For administration, there is a powerful separation
of administration duty scheme, which e.g. allows to
create closed or overlapping workgroups. For this, the
role vectors admin_roles and assign roles are defined
for roles, and the additional access rights admin, as-
sign, access_control and supervisor are defined for all
types. The scheme is, like all other model details, de-
scribed in the online model description at [RSBAC].

With its level of abstraction and design for *nix
needs, the RC model gives a fast and flexible access
control setup. It is thus recommended for most pur-
poses.

4.9 ACL

Access Control Lists (ACL) define, what subject may
access which object with which request types. They
are always attached to objects. Subjects can be RC
roles, thus extending the RC model, individual users
or ACL groups.

Every user is allowed to define individual global
or private groups of users. Global groups can also be
used for administration by other users, private groups
are unusable for those. In a simple scenario, one user
could administrate a set of global groups for all oth-
ers.

However, it is also possible to e.g. setup work-
groups, where the group leader defines all group mem-
berships, but a system wide security officer assigns all
necessary access rights for this group.

If there is no ACL entry for a subject at an object,
the object parent’s ACL entries are used, but filtered
through the object’s inheritance mask. On top of all
object trees, there is a default ACL for each target
type. The whole inheritance scheme is similar to that
of a well known traditional PC network system.

For administration, there are three special access
rights: Access Control allows to grant or revoke all
standard rights, Forward allows to forward the stan-
dard rights you have to others, and Supervisor allows
everything. In default kernel config, the Supervisor
right can never be masked out.

Like in RC model, to allow control of requests with
target NONE, those requests are checked against the
SCD target 'other’.

The ACL model is recommended in those cases,
where the RC model role or type abstraction is not
sufficient to cover all necessary access control set-
tings. However, it is much more difficult to keep

Page 5

the overview of a complex ACL setup than of an RC
setup.

5 Installation under Linux

All newer RSBAC versions for Linux come in three
parts: a kernel files tar archive, a kernel patch and an
administration tools package. In most cases, all three
parts are needed and must be of the same version.

5.1 Linux Kernel

The kernel files tar archive is simply unpacked in the
kernel source tree. Then the patch for the target ker-
nel version is applied using the patch utility. After
kernel configuration (RSBAC default settings are fine
for beginners), call touch Makefile’, compile and in-
stall the new kernel and modules, if any.

Specially for beginners, it can be useful to also
compile and install a second kernel with Maintenance
Mode enabled, or to enable Soft Mode in the first one.
These options can give you emergency access after an
administration error.

5.2 Administration tools

Just untar the tar archive, ./configure, make and
make install. If your kernel source tree is not at
Jusr/src/linux, use the —with-kerneldir configure op-
tion.

5.3 First Boot

If the recommended AUTH model has been in-
cluded, you will have to use the kernel parameter rs-
bac_auth_enable_login when for the first time booting
an RSBAC kernel. This parameter makes the init
code set the auth_may_setuid flag for /bin/login to
allow this program to CHANGE_OWNER.

Also with AUTH, several daemons will fail to run,
because they are not allowed to setuid to their des-
ignated user IDs. The necessary AUTH capabilities
will have to be set later.

After boot, you should login as root and create a
user account with ID 400, which is the Security Offi-
cer etc. account in the default settings. You will need
it for administration.

As a first task, the Security Officer (ID 400) should
now set the AUTH capabilities for the failing dae-
mons with ’rsbac_fd_menu filename’. You will find the
necessary values from the denied CHANGE_OWNER
requests in the system log.

6 Administration

6.1 Attributes

Model administration is mostly setting various at-
tributes for objects, e.g. RC types, and model specific
items, e.g. RC roles.

6.2 Command Line Tools

For all settings, there are command line tools avail-
able. Most of the tools have a set of options and
parameters, which are displayed when they are called
without any parameter. Figure 2 on page 7 shows
such a help screen.

6.3 Menues

Most RSBAC settings can also be done with adminis-
tration menues, which are strongly recommended for
interactive use. Figure 3 on page 7 shows the RSBAC
main menu screen.

7 Usage Areas

The RSBAC system can be useful in many environ-
ments. Some examples for workstations and servers
are given here.

7.1 Workstations

On a workstation, the main goal would be to protect
against unwanted configuration changes, as well as
against any type of malware infection.

A given system setup can be easily maintained in
its original state, reducing administration work.

7.2 Servers

Usually, the first step to secure a server system is
to protect its executables, libraries and configuration
files against unauthorized modifications. After that,
all services can be encapsulated into individual sand-
boxes.

Examples of servers that need service encapsulation
or compartmentation are:

Firewalls: DNS and mail forwarders, Web and FTP
proxies

(Virtual) Webservers: Apache, Zope etc., CGIs,
separation of virtual domains

(Virtual) Mail Servers: Sendmail, QMail, Post-
fix, POP3, IMAP, mailing lists, separation of
mail areas

Page 6

R Konsole 4> S
'ﬁ Datei Sitzungen Optionen Hilfe
ottBmarvin:™ » acl_grant [

acl_grant (RSBAC wil.l.Zpred)
Aok

Use: acl_grant [switches] subj_type subj_id [rights] target-type file/dirnamels)

-v = wverbose, -r = recurse lnto subdirs,

-p = print right names, -z = set rights, not add

-k = revoke rights, not add, -m remowve entry (set back to inherit)
-b = expect rights as bitstring, -n = list walid S5CO names

-u, -g, -1 = shortcuts for USER, GROUF and ROLE
subj_type = USER, GROUF or ROLE,
subj_id = user name or id number,
rights = list of space-separated right names (reguests and ACL specials),
also request groups R (read requests), RW (read-write), W (write)
SY (system), SE (securityl), A (all)
S (ACL special rights)
and MWx with x = S R WCEAFM (similar to well-known network system)
target-type = FILE, DIR, FIFO, SYMLIMK, DEYW, IPC, SCD, USER, PROCESS or FD
(FD: let acl_grant decide between FILE, DIR, FIFO and SYMLINK, no DEV),
{IPC, USER, PROCESS: only :DEFAULT:
- Use name :DEFAULT: for default ACL
ottBmarvin:™ > [

Figure 2: acl_grant commandline tool help screen.

IR konsole 2> =S
7 Datei Sitzungen Optionen Hilfe
RSBAC Administration Tools wl.1.2 [

ottEmarvin: RSBAC Administration e
Main Menu

J=er Attributes: Go to user attribuote menu
File/Dir Attributes: Go to filesdir attribute menu
ElocksChar Dewvice Attributes: Go to dev attribute menu
Frocess Attributes: Go to process attribute menu
IPC Attributes: Go to IPC attribute menu

FC Roles: Go to RC role menu

FC Types: Go to RC type menu

ACL Managzement: Go to ACL menu

ACL Group Management: Go to ACL group menu

Switch Modules: Switch modules on or off
Check Status: rshac_check 1 1

Show Status

Show PM Status

Show REC Status

Show ACL Lists

Show ACL Groups

Show exXtended Status

< Emk > {Cancel>

Figure 3: RSBAC Main Menu.

Page 7

File Servers: Samba, Coda, separation of organiza-
tional areas like workgroups, etc.

Application Servers: separation of user accounts,
protection against malware or user attacks

8 Practical Experience

During several years of RSBAC development, a lot of
experience with the system has been gained.

8.1 Running Systems

Compuniverse Linux Firewalls have been delivered
and have since then been running with RSBAC for
over a year. They show that base protection and ser-
vice encapsulation are possible without drawbacks in
usability. The RSBAC models used are AUTH, FF
and, most of all, RC. Some software has been specially
selected for easier protection, e.g. a POP3 server with
a separate authentication daemon.

Feedback by email or on the RSBAC mailing list
shows many server systems running with RSBAC,
some of them in areas with special security needs.
Also, there are now two Linux distributions config-
ured and delivered with RSBAC, ALTLinux Castle
and Kaladix.

8.2 Stability

In uni-processor mode, RSBAC has shown to be very
stable for over a year. In SMP mode, versions up to
1.1.0 had some stability problems on several sample
systems, version 1.1.1 had only very few problems.
The remaining problems should be solved in 1.1.2-
pre9, but are still tested.

8.3 Performance

The main performance influences are the number and
dynamic change of attribute objects, the number and
types of decision modules and, of course, the amount
of logging.

Kernel compile time benchmarks on standard 2.4.6
kernel sources in default settings have been run for
RSBAC version 1.1.2-pre8 with kernel 2.4.6. The test
system had one Celeron CPU with 333 MHz, 256MB
RAM and different RSBAC configurations. Each sin-
gle test consisted of three 'make bzImage’ runs, mea-
sured by the ’time’ utility, in single user mode. To
eliminate caching issues, one extra test compile was
done before the timed compilations. Before each run,
a 'make clean’ was called.

Table 1 on page 9 shows the average times in sec-
onds that were produced. The significant kernel time
increase with all options is mostly due to the MS mod-
ule with read check enabled, which marks all files ever
read as scanned and thus produces a huge amount of
attribute objects in large lists. Lookups in large lists
are slow.

9 Online Ressources

All sources and a lot of documentation are
available online at the RSBAC homepage at
http://www.rsbac.org.

There is also an RSBAC mailing list for dis-
cussion, bug reports and update notes. Post-
ings to the mailing list go to rsbac@rsbac.org,
requests go to majordomo@rsbac.org. A
Web interface with archive is available at
http:/ /www.compuniverse.de/lwgate/rsbac.

10 Outlook

Important changes are planned for the next major
release 1.2.0. Some of them are:

e Real network access control: socket templates
and socket targets, new requests BIND, CON-
NECT, etc.

e Better user authentication: kernel space user
management(?), RSBAC standard AUTH dae-
mon(?), biometric authentication(?)

e PM overhaul with menues
e Filesystem redirection support(?)
e Tool for automatic rule creation from access logs

e Samba integration of ACL model

References

[Abrams+90] Abrams, M. D., Eggers, K. W., La
Padula, L. J., Olson, I. M., A Gen-
eralized Framework for Access Con-
trol: An Informal Description, Pro-
ceedings of the 13th National Com-

puter Security Conference, Oktober

1990
[CU] Brauch, K., Ott, A,
Compuniverse Homepage,

http:/ /www.compuniverse.de

Page 8

RSBAC options

| Total time

| Kernel+User

| Kernel

| User/Process

none / clean kernel

711.75

711.74

34.83

676.91

Maint kernel (no mods, no de-
bug)

719.09 (+1.03%)

719.09 (+1.03%)

41.02 (+17.77%)

678.07 (+0.17%)

Maint kernel (no modules)

719.20 (+1.05%)

719.19 (+1.05%)

39.04 (+12.09%)

680.15 (+0.48%)

RC + AUTH, no other options

719.36 (+1.07%)

719.35 (+1.07%)

4541 (+30.38%)

673.94 (-0.44%)

AUTH + ACL, no other op-
tions

721.18 (+1.32%)

721.19 (+1.33%)

44.56 (+27.94%)

676.63 (-0.04%)

REG+FF+RC+AUTH+ACL,
Net support, ind. Log (def.
config)

729.33 (+2.47%)

729.33 (+2.47%)

52.76 (+51.48%)

676.57 (-0.05%)

All models + options, except
MS

763.35 (+7-25%)

763.07 (+7.21%)

81.63 (+134.37%)

681.44 (+0.67%)

All models and options

854.69 (+20.08%)

854.21 (+20.02%)

169.65 (+387.08%)

684.56 (+1.13%)

Table 1: Standard 2.4.6 kernel source compile benchmarks with different RSBAC options. Times are given in

seconds.

[EU95]

[FiHue97]

[FiHueOtt98]

[LaPadula95)

[OttFiSwiog]

Directive 95/46 /EC of the European
Parliament and of the Council, On
the protection of individuals with re-
gard to the processing of personal
data and on the free movement of
such data, Brussels, 1995

Fischer-Hiibner, S., A Formal Task-
based Privacy Model and its Im-
plementation: An updated Report,
Second Nordic Workshop on Secure
Computer Systems (NORDSEC’97),
Helsinki, 1997

Fischer-Hiibner, S., Ott, A., From
a Formal Privacy Model to its
Implementation, Proceedings of
the 21st National Information
Systems Security Conference
(NISSC °98), Arlington, VA, 1998,
http://www.rsbac.org/niss98.htm

La Padula, L. J., Rule Set Mod-
eling of a Trusted Computer Sys-
tem, Essay, in: Information Secu-
rity: An Integrated Collection of Es-
says, Hrsg.: Abrams, M. D., Jajo-
dia, S., Podell, H. J., IEEE Com-
puter Society Press, 1995

Ott, A., Fischer-Hiibner, S., Swim-
mer, M., Approaches to Integrated
Malware Detection and Avoid-
ance”, Proceedings of the 3rdNordic
Workshop on Secure IT Systems,

[RSBAC]

Trondheim, November 5-6, 1998,
http://www.rsbac.org/nordse98.htm

Ott, A., RSBAC Homepage,
http://www.rsbac.org

Page 9

