
Rule Set Based Access Control (RSBAC)

Linux Kernel Security Extension

Linux Kongress 2004 - One Day Workshop

Amon Ott <ao@rsbac.org>

 Contents:

 1 Introduction to RSBAC
 1.1 History
 1.2 Motivation
 1.3 Design Goals

 2 Overview of RSBAC

 3 Architecture and Implementation of the Framework
 3.1 Subjects and Objects
 3.2 List of Requests with Targets
 3.3 Architectural Diagram
 3.4 Module Registration (REG)
 3.5 Network Templates

 Contents II:

 4 Selection of Implemented Models
 4.1 Authentication Enforcement (AUTH)
 4.2 Role Compatibility (RC)
 4.3 Access Control Lists (ACL)
 4.4 File Flags (FF)
 4.5 Linux Capabilities (CAP)
 4.6 Process Jails (JAIL)
 4.7 Resource Control (RES)
 4.8 Pageexec Support (PAX)

 Contents III:

 5 Installation
 5.1 Linux Kernel
 5.2 Administration tools
 5.3 First Boot

 6 Administration
 6.1 Command Line Tools
 6.2 Menues

 7 Usage Areas
 7.1 Workstations
 7.2 Servers

 Contents IV:

 8 Practical Experience
 8.1 Running Systems
 8.2 Stability
 8.3 Performance

 9 Online Resources

 10 How to Identify Security Requirements on a Server
 10.1 System Base
 10.2 Services
 10.3 Users, User IDs and Paths
 10.4 Logging

 Contents V:

 11 Selecting a Security Model Combination
 11.1 General Criteria
 11.2 Model Specifics
 11.3 Experiences

 Contents VI:

 12 Breaking the Requirements into Model Specific Designs
 12.1 Base Protection and Service Encapsulation
 12.2 AUTH
 12.3 FF
 12.4 JAIL
 12.5 RC
 12.6 ACL
 12.7 Logging
 12.8 Special RSBAC Goodies

 Contents VII:

 13 Sample Configuration
 13.1 Select Simple Server Type
 13.2 Specify Requirements
 13.3 Select Models
 13.4 Design a Configuration
 13.5 Implement It

 14 Improvement Discussion
 14.1 Outlook on v1.2.4
 14.2 ???

 Contents VIII:

 15 Ending It Up
 15.1 Conclusion: What we learned
 15.2 How to Go On
 15.3 Final Questions.

 1 Introduction

 1.1 History
 1.2 Motivation
 1.3 Design Goals

 1.1 Introduction: History

 RSBAC Project started as Master Thesis in November 1996

 First public RSBAC version 0.9 for Linux kernel 2.0.30 on January, 9, 1998

 Current stable release 1.2.3 for kernels 2.4.26-27 and 2.6.6-8

 1.2.4 with many changes (see Outlook)

 1.2 Introduction: Motivation

 Classic Linux/Unix Access Control is insecure
 Small Granularity

 Discrete Control
 Trusted user?
 Malware: Invitation to Trojans and Viruses

 Superuser root
 Full Access
 Too often needed
 Too many exploits (root kits, kernel module attacks etc.)

 Better models for other administration goals
 Flexible Model selection and combination

 Good portability.

 2 Overview of RSBAC

 Free Open Source (GPL) Linux kernel security extension

 Independent of governments and big companies

 Several well-known and new security models, e.g. MAC, ACL and RC

 Control over individual user and program network accesses

 Any combination of models possible

 Easily extensible: write your own model for runtime registration.

 2 Overview of RSBAC II

 Support for current 2.4 and 2.6 kernels

 Stable for production use since March 2000

 Several publications (see Homepage)

 Linux distributions with RSBAC: Adamantix and Gentoo Hardened

 Debian kernel patch package, Sniffix Live CD System, Simple Live-CD

 Outdated Linux distributions with RSBAC: ALTLinux Castle and Kaladix.

 2 Overview of RSBAC III

 Access Control Framework for current Linux Kernels

 Based on Generalized Framework for Access Control (GFAC) by Abrams
and LaPadula

 Flexible structure
 Separation between enforcement (AEF), decision (ADF) and access

control information (ACI)
 Only AEF and part of ACI system dependent
 Almost any type of model supportable
 Model independent -> meta policy
 Runtime Module Registration (REG)

 2 Overview of RSBAC IV

 Powerful logging system
 Request and decision based
 User based
 Program based
 Object based.

 3 Architecture and Implementation of the
Framework

 3.1 Subjects and Objects
 3.2 List of Requests with Targets
 3.3 Architectural Diagram
 3.4 Module Registration (REG)
 3.5 Network Templates

 3.1 Architecture: Subjects and Objects

 Subjects:
 Processes acting on behalf of users,
 executing one program file with a set of dynamic libraries

 Object Types (Target Types):
 FILE
 DIR
 FIFO
 SYMLINK
 DEV (devices by block/char and major:minor)
 IPC (Inter Process Communication)
 SCD (System Control Data)
 USER
 PROCESS
 NETDEV
 NETTEMP
 NETOBJ

 3.2 Architecture: List of Requests

 Requests:
 Abstraction of what a subject wants to do with an object

 46 Request Types:

 R_ADD_TO_KERNEL: NONE
 R_ALTER: IPC
 R_APPEND_OPEN: FILE, FIFO, DEV, IPC
 R_CHANGE_GROUP: FILE, DIR, FIFO, SYMLINK, IPC, PROCESS, NONE
 R_CHANGE_OWNER: FILE, DIR, FIFO, SYMLINK, IPC, PROCESS, NONE
 R_CHANGE_DAC_EFF_OWNER: PROCESS
 R_CHANGE_DAC_FS_OWNER: PROCESS
 R_CHDIR: DIR
 R_CLONE: PROCESS
 R_CLOSE: FILE, DIR, FIFO, DEV, IPC, NETOBJ

 3.2 Architecture: List of Requests II

 R_CREATE: DIR (where), IPC, NETTEMP, NETOBJ
 R_DELETE: FILE, DIR, FIFO, SYMLINK, IPC, NETTEMP, NETOBJ
 R_EXECUTE: FILE
 R_GET_PERMISSIONS_DATA: FILE, DIR, FIFO, SYMLINK, IPC, SCD
 R_GET_STATUS_DATA: FILE, DIR, FIFO, SYMLINK, IPC, SCD,
PROCESS, NETDEV

 R_LINK_HARD: FILE, FIFO, SYMLINK
 R_MODIFY_ACCESS_DATA: FILE, DIR, FIFO, SYMLINK
 R_MODIFY_ATTRIBUTE: All target types
 R_MODIFY_PERMISSIONS_DATA: FILE, DIR, FIFO, SYMLINK, IPC, SCD,
NONE

 R_MODIFY_SYSTEM_DATA: SCD, PROCESS, NETDEV
 R_MOUNT: FILE, DIR, DEV
 R_READ: FILE, DIR, FIFO, DEV, IPC, NETTEMP, NETOBJ
 R_READ_ATTRIBUTE: All target types
 R_READ_OPEN: FILE, FIFO, DEV, IPC

 3.2 Architecture: List of Requests III

 R_READ_WRITE_OPEN: FILE, FIFO, DEV, IPC
 R_REMOVE_FROM_KERNEL: NONE
 R_RENAME: FILE, DIR, FIFO, SYMLINK
 R_SEARCH: DIR, SYMLINK
 R_SEND_SIGNAL: PROCESS
 R_SHUTDOWN: NONE
 R_SWITCH_LOG: NONE
 R_SWITCH_MODULE: NONE
 R_TERMINATE: PROCESS (notify only)
 R_TRACE: PROCESS
 R_TRUNCATE: FILE
 R_UMOUNT: FILE, DIR, DEV
 R_WRITE: FILE, DIR, FIFO, DEV, SCD, NETTEMP, NETOBJ
 R_WRITE_OPEN: FILE, FIFO, DEV, IPC
 R_MAP_EXEC: FILE, NONE

 3.2 Architecture: List of Requests IV

 R_BIND: NETDEV, NETOBJ
 R_CONNECT: NETOBJ
 R_LISTEN: NETOBJ
 R_ACCEPT: NETOBJ
 R_SEND: NETOBJ
 R_RECEIVE: NETOBJ

 3.3 Architectural Diagram

Subject

Object

AEF

Data Structures

(1)
requests

access

(3) requests decision, (9) notifies

(5) replies 'granted' oder 'not granted'
(12) acknowledges

(4,10)
refer to

Data Structures

(11) update
(2) gets
system values

(6) if 'not granted': returns error (end here)
(8) if access failed: returns error (end here)
(13) returns control and data

ADF
RC rules

AUTH rules

ACL rules

System Values

System Kernel

(7) performs
access

System Call

 3.4 Module Registration (REG)

 Runtime registration of decision functions (Rule Sets) and system calls

 Model implementation e.g. as kernel module

 Add or remove models, syscalls or generic (persistent) lists in a running
system

 Easy control of module removal by the module itself

 Sample modules provided.

 3.5 Network Templates

 Description of network endpoints
 Ordering Number
 Name (for human use only)
 Address family (UNIX, INET, IPX, ...)
 Address (E.g. 192.168.10.0 or "/dev/log")
 Valid length (e.g. 24 Bits or 8 Byte)
 Type (ANY, STREAM, DGRAM, ...)
 Protocol (ICMP, TCP, UDP, ...)
 Local network device (E.g. eth0)
 Min and max port (E.g 1024-65535)

 Attribute values attached to templates
 Persistent default values for NETOBJ attributes

 Matched from lowest to highest template ordering number
 Used for local and remote endpoint, depending on request type.

 3.5 Network Templates II: Examples

 Only apache may bind to port 80 at eth0

 Proxy may only connect to external addresses, not LAN
 Proxy may only accept connections from internal addresses

 Local users may only connect to mail and proxy server
 Local users (including root) may only use network families UNIX and INET.

 4 Selection of Implemented Models

 4.1 Authentication Enforcement (AUTH)
 4.2 Role Compatibility (RC)
 4.3 Access Control Lists (ACL)
 4.4 File Flags (FF)
 4.5 Linux Capabilities (CAP)
 4.6 Process Jails (JAIL)
 4.7 Resource Control (RES)
 4.8 Pageexec Support (PAX)

 4.1 Models: Authentication (AUTH)

 Restriction of CHANGE_OWNER with target PROCESS
(setuid)

 CHANGE_OWNER capabilities (inherited from file to process): sets of
reachable user IDs

 auth_may_setuid and auth_may_set_cap

 Daemon based authentication enforcable:
 Process authenticates against daemon
 Daemon sets capability for auth’d user at process
 Process calls setuid.

 4.1 Models: AUTH II

 Limited lifetime of all AUTH capabilities

 New in 1.2.2: Capabilities for effective and fs uids

 New in 1.2.3: AUTH learning mode.

 4.2 Models: Role Compatibility (RC)

 Role and type based model:
 User default role
 Process current role
 Object type

 Compatibility of roles
 with object types (access rights in RSBAC framework granularity)
 with other roles (change role actively)

 Forced and Initial Roles for program files

 4.2 Models: Role Compatibility (RC) II

 Separation of Administration Duties
 Admin Roles
 Assign Roles
 Additional access rights: Admin, Assign, Access Control, Supervisor

 Lifetime limits for all compatibility settings.

 4.3 Models: Access Control Lists (ACL)

 What subject may access which object with which requests

 Subjects:
 RC roles (!)
 Users
 ACL Groups

 ACL Groups of users:
 All users can have individual groups
 Private and global groups

 Inheritance with masks (similar to Netware 3.xx)

 Default ACLs on top of hierarchy.

 4.3 Models: Access Control Lists II

 Special Rights for administration:
 Access Control
 Forward
 Supervisor

 Lifetime limits for all ACL entries and group memberships

 New in 1.2.3: ACL learning mode.

 4.4 Models: File Flags (FF)

 Inheritable FILE, DIR, FIFO and SYMLINK attributes

 Valid for all users

 e.g. read-only, no-execute, secure-delete, append-only.

 4.5 Models: Linux Capabilities (CAP)

 Minimum and maximum capability sets for users and programs
 Applied at CHANGE_OWNER on processes (setuid) and EXECUTE

 Precedence of Minimum over Maximum Sets
 Precedence of Program over User Sets

 Limit rights of root programs or extend rights of normal user programs
 E.g. limit mail server to never change network settings.

 4.6 Models: Process Jails (JAIL)

 Preconfigured process encapsulation

 Sealed chroot jails

 No contact to processes outside the jail

 Many further restictions, some optional

 Specially limits administration and network accesses.

 4.7 Models: Resource Control (RES)

 Minimum and maximum resource limits for users and programs

 Applied at CHANGE_OWNER on process (setuid) and EXECUTE

 Precedence of Minimum over Maximum Sets
 Precedence of Program over User Sets

 Only management of existing Linux process attributes
 Max. file size, number of processes, memory usage, etc.

 4.8 Models: Pageexec (PAX)

 Management of process attributes for PaX kernel security extension

 PaX protects from common attack types against buggy programs
 Special protection against inserted program code

 More info: pax.grsecurity.net.

 5 Installation under Linux

 5.1 Linux Kernel
 5.2 Administration tools
 5.3 First Boot

 5 Installation for Linux

 Linux Kernel (pre-patched)
 Extract kernel source tar archive
 Configure, touch Makefile, compile and install
 RSBAC normal and maint kernels / Soft Mode

 Linux Kernel (patch yourself)
 Extract RSBAC tar archive in kernel dir
 Patch kernel (with patch-x.y.z-va.b.c.gz)
 Apply bugfixes
 Configure, touch Makefile, compile and install
 RSBAC normal and maint kernels / Soft Mode

 Administration tools
 Extract tar archive
 ./configure && make && make install

 5 Installation for Linux II

 First Boot
 Kernel parameter rsbac_auth_enable_login
 Add user 400 (Security Officer etc.)
 Adjust AUTH capabilities for failed services or use AUTH learning mode.

 6 Administration

 6.1 Command Line Tools
 6.2 Menues

 6.1 Administration: Command Line

 General and Model specific (RC, AUTH, ACL)

 6.2 Administration: Menues

 7 Areas of use

 7.1 Workstations
 7.2 Server systems

 7.1 Areas of use: Workstations

 Protection against unwanted configuration changes

 Malware protection

 Reduced administration work.

 7.2 Areas of use: Server Systems

 Encapsulation of services
 Need-to-Know principle
 Malware protection

 Firewalls
 DNS, Proxies, etc.
 Advanced Protection of base system

 (Virtual) Webservers
 Apache, Zope etc.
 Separation of domains
 Protection of critical data
 Encapsulation of CGIs.

 7.2 Areas of use: Server Systems II

 (Virtual) mail servers
 sendmail, postfix, qmail, POP3, IMAP, Mailing Lists etc.
 Separation of mail areas

 File servers
 Samba, Coda, etc.
 Separation of organizational areas

 Application servers
 Separation between user accounts
 Protection against user attacks

 Other servers.

 8 Practical Experience

 8.1 Running Systems
 8.2 Stability
 8.3 Performance

 8.1 Experience: Running Systems

 Linux distributions Adamantix and Gentoo Hardened with RSBAC

 m-privacy TightGate-Pro
 Extensive use of RSBAC
 Application server system for secure Internet access
 Strong encapsulation of all network services and users
 Uses most of the models mentioned

 Many other stable production systems worldwide.

 8.2 Practical Experience: Stability

 More than four years of very high stability

 SMP systems more than three years of high stability

 Few people reported problems with v1.2.3 on 2.6 kernels

 8.3 Practical Experience: Performance

 Performance influences
 Number and dynamic change of attribute objects
 Number and type of decision modules
 Logging

 Benchmarks
 Celeron 333 system, 2.4.19 kernel, RSBAC 1.2.1
 Three Linux kernel compile runs each
 Runtime with framework only: +0.68% (Kernel +11.33%)
 Runtime with RC, AUTH, network, logging enabled: +2.30% (kernel

+43.02%)
 Runtime with REG, FF, RC, AUTH, ACL, CAP, network (def. config):

+4.21% (kernel +82.47%).

 9 Online Ressources

 RSBAC Homepage: http://www.rsbac.org

 Mailing List
 Requests: rsbac-request@rsbac.org
 Mails: rsbac@rsbac.org
 Archive available (see contact page)

 Adamantix
 http://www.adamantix.org

 Gentoo Hardened Subproject RSBAC
 http://hardened.gentoo.org/rsbac

 10 How to Identify Security
Requirements on a Server

 10.1 System Base
 10.2 Services
 10.3 Users, User IDs and Paths
 10.4 Logging

 10.1 Requirements: System Base

 Filesystem Structure
 Modification often leads to denial of service
 -> Find critical elements, e.g. /bin, /etc, /boot, /var

 Executables
 Liable to virus or trojan infection, possible denial of service
 -> Identify all (dirs with) executables in the system to be protected
 /bin, /usr/bin, /sbin, /usr/sbin, several dirs under /usr/lib, ...
 -> Specify, what files should *not* be executed
 What is not protected should never be executed, so best chose ’everything else’

 Libraries
 Same as executables, but different access patterns
 Files *.so*, some subdirs, e.g. /usr/lib/apache.

 10.1 Requirements: System Base II

 Configuration Files
 Modification can lead to illegal accesses or denial of service
 -> identify all (dirs with) important configuration files

 Kernel Objects
 Kernel Images
 Kernel Module Files
 Allow only those to be loaded
 System.map
 Raw Memory
 Should never be accessed

 Devices
 Raw access can bypass access control and lead to almost any problem
 -> Identify all devices, which can be used to compromise the system

(/dev/hda, /dev/mem, ...).

 10.1 Requirements: System Base III

 Authentication data
 Essential for security
 -> Identify programs which may read or even modify for all users
 -> e.g. /bin/login, /usr/bin/passwd, /usr/sbin/user{add|mod|del}
 -> Optional: ’Account Manager’ user who may read or even modify

 Network Resources
 Prevent local service program replacements
 Limit possible attacks from this on other systems
 -> Identify local resources, which must only be served by one program
 -> Identify remote resources needed by services and users

 10.1 Requirements: System Base IV

 Other Objects
 boot files
 ioports / direct hardware access (X server etc.)
 log files ...

 10.2 Requirements: Services

 Protection of and against all services

 Local services maintain functionality
 Identify all local services you need (and turn all others off)

 Network services make servers, but are their main vulnerability
 Identify all network services you need (and turn all others off)

 Identify objects and access patterns for each service
 Don’t worry: a rough approximation gives a good start.

 10.3 Requirements: Users, User IDs and
Paths

 Identify all user types of the system
 Local and remote users
 What services do they use?

 Find all user IDs needed by each service
 Service users and running IDs (wwwdata, ssh etc.)
 Ranges of IDs usable

 Identify the user ID paths
 User login paths (who logs in through which service)
 Chains of IDs used by services.

 10.4 Requirements: Logging

 Detect attacks

 Provide user accountability (who did what)

 Provide a modification history etc.

 -> Identify the users, programs, objects and accesses you would like to
know about.

 11 Selecting a Security Model
Combination

 11.1 General Criteria
 11.2 Model Specifics
 11.3 Experiences

 11.1 Model Selection: General Criteria

 Only consider models you really understand

 Think how each model could meet your requirements *before* choosing
 -> Feedback from requirement break down to models

 Keep it simple:
 Choose only those models that really give you a benefit
 Try to keep models distinct - overlaps can be confusing

 Develop a personal order in which to apply each model from easiest to
most difficult.

 11.2 Model Selection: Model Specifics

 Authentication Enforcement (AUTH)
 Use for all user ID related things, e.g. to restrict login paths
 Quite simple
 Essential

 File Flags (FF)
 Use for filesystem object protection which is common for all users
 Pretty simple
 Recommended for directory structure protection

 Process Jails (JAIL)
 Easy to use service encapsulation
 Pretty simple
 Recommended for all services which need no administrative privileges.

 11.2 Model Selection: Model Specs II

 Role Compatibility (RC)
 Use for all users and objects, which can be generalized into roles and

types
 Use for program based administration
 Medium level
 Strongly recommended because of role/type abstraction

 Access Control Lists (ACL)
 Use whenever you need rights for individual users or objects
 Use, if you also need discretionary control or individual user groups
 Medium level, but difficult to keep setup overview
 Recommended for uses named above

 11.2 Model Selection: Model Specs III

 Other Models: CAP, RES, PAX, DAZ, MAC, FC, SIM, PM
 Only use for specific needs
 MAC, FC, SIM, PM in most cases not recommended
 Not treated here.

 11.3 Model Selection: Personal
Experiences

 Typical Combination: AUTH, RC, JAIL, a bit of FF, CAP, RES

 Optional: PAX, DAZ

 ACL mostly unused.

 12 Breaking the Requirements into
Model Specific Designs

 12.1 Base Protection and Service Encapsulation
 12.2 AUTH
 12.3 FF
 12.4 JAIL
 12.5 RC
 12.6 ACL
 12.7 Logging
 12.8 Special RSBAC Goodies

 12.1 Base Protection and Service
Encapsulation

 Base Protection: Service independent protection of the
system base

 Protect identified system base (see 10.1: Base requirements)
 Infrastructure and ’fallback’ for service encapsulation
 Strongly recommended

 Service Encapsulation: ’Sandbox’ around each individual service
 Minimum access rights
 For remote access and root account services strongly recommended
 Other services optional

 No strict separation
 Service encapsulation uses Base Protection infrastructure.

 12.2 Requirements to AUTH: User ID
paths

 Define setuid capabilities for all programs

 Follows directly from 10.3: User ID requirements.

 12.3 Requirements to FF: Base
protection only

 Filesystem infrastructure
 Set no_rename_or_delete on all important dirs and files (not inherited),

e.g. /etc, /bin, /usr/bin, /boot, ...

 Protect executables, libraries, configuration files, kernel objects and boot
files

 Set flags search_only (only applied on dirs) and read_only
 Optional: set execute_only on binary executables (scripts need

READ_OPEN etc.)

 Protect against execution of uncontrolled files
 Unset flag add_inherited on all objects named above
 Set flag no_execute on / (or e.g. /home only)

 Service encapsulation not possible.

 12.4 Requirements to JAIL: Service
encapsulation only

 Start each service in a JAIL
 Use rsbac_jail wrapper program
 Replace chroot() calls with rsbac_jail() in source

 Allow only required Linux capabilities

 Create sub-jails whenever useful

 Can be used for almost all services.

 12.5 Requirements to RC

 Protect executables, libraries, configuration files, kernel
objects, boot files and /tmp dirs

 Define one RC file/dir type for each group
 Remove unneccessary rights to these types from all defined roles
 Optional: Define new role ’Configuration’
 Only role with write access to configuration files
 Assign to config user or make System Admin role compatible with it
 Optional: Define new role ’Module Loader’
 Only role allowed to load modules
 Can only read libraries and type ’Modules’
 Set as initial role for insmod etc.
 Set types for the protected objects

 12.5 Requirements to RC II

 Protect against execution of uncontrolled files
 Remove EXECUTE right to all types except executables
 Remove MAP_EXEC right to all types except executables and libraries.

 Protect devices
 Define RC device types, e.g. ’Raw Disk’
 Define RC roles for specific tasks, e.g. ’Raw Disk Access’ for fsck
 Remove unneccessary rights to these types from all defined roles
 Assign specific task roles to programs
 Set types for the protected objects

 12.5 Requirements to RC III

 Authentication data
 Define RC file/dir types ’Account Data’ and ’Auth Data’
 Define RC roles ’Authenticate’ and ’Change Auth Data’
 Set rights:
 All roles may read account data (e.g. /etc/passwd)
 Role ’Authenticate’ may also read ’Auth Data’
 ’Change Auth Data’ may read and write ’Account Data’ and ’Auth Data’
 Assign roles to identified programs as initial roles or forced roles

 Protect network resources
 Define network templates for all identified local and remote network

endpoints
 Define RC NETOBJ types, e.g. ’http-remote’
 Assign network rights to all roles as desired
 Assign RC NETOBJ types to templates.

 12.5 Requirements to RC IV

 Service encapsulation
 Define RC role(s) for service
 Copy existing role, e.g. ’General User’
 Define RC file/dir types for service specific data
 Log dirs, data, file server areas etc.
 Define Network Templates and RC NETOBJ types for service specific

network resources

 Set role rights:
 Access own types as necessary
 SEARCH, READ_OPEN, READ, CLOSE and MAP_EXEC libraries
 Only SEARCH ’General Type’ for path resolution
 Optional: read and write on /tmp dirs (try to avoid)
 No access to other FD types
 Device and NETOBJ type access as required

 12.5 Requirements to RC V

 Service encapsulation (cont.)
 Assign roles to service users or program file (root services)
 User’s default role or program file initial / forced role

 Optional: Define default process create type for role
 Protect against signals and tracing by others.

 12.6 Requirements to ACL

 Protect executables, libraries, configuration files, kernel
objects, boot files and /tmp dirs

 Set inheritance mask to filter out unneccessary rights to these objects

 Protect against execution of uncontrolled files
 Explicitly grant SEARCH, READ_OPEN, READ, CLOSE and EXECUTE

right for group ’Everyone’ to all executables and libraries
 Remove EXECUTE right from FD :DEFAULT:

 Protect devices
 Set inheritance mask to filter out unneccessary rights to these objects
 Explicitly grant necessary accesses for special task users (or groups /

RC roles), e.g. for fsck.

 12.6 Requirements to ACL II

 Authentication data
 Only user, group or RC role based protection possible
 Set inheritance mask to filter out unneccessary rights to these objects
 Explicitly grant necessary accesses for special task users (or RC roles)

 Protect network resources
 Define network templates for all identified local and remote network

endpoints
 Inheritance from NETOBJ to matching template to NETOBJ default ACL
 -> Set template’s inheritance mask to filter out unneccessary rights to

the network objects covered by each template
 -> Set ACL entries on the templates for all subjects as desired.

 12.6 Requirements to ACL III

 Service encapsulation
 Only user, group or RC role based protection possible
 Group everyone might have to be replaced by a controlled group

 Set service user rights:
 Access own dirs/files as necessary
 SEARCH, READ_OPEN, READ, CLOSE and MAP_EXEC libraries
 Only SEARCH :DEFAULT: for path resolution
 Optional: read and write on /tmp dirs (try to avoid)
 No access to other FD objects
 Device access as required.

 12.7 Requirements to Logging Setup

 Set individual logging for identified objects and requests

 Set individual user and program logging for identified requests

 Use RSBAC own logging source at /proc/rsbac-info/rmsg for untamperable
logging.

 12.8 Special RSBAC Goodies

 Softmode
 Optimize your setup without locking yourself out
 Global and individual module softmode

 Individual user (RC role) /tmp dirs with symlink redirection
 mkdir /tmpdir
 mkdir /tmpdir/tmp<uid> (mkdir /tmpdir/tmp<role-nr>)
 rmdir /tmp
 ln -s /tmpdir/tmp /tmp

 Allow security admins to browse all dirs without suid root
 Use CAP model to set user min_cap DAC_READ_SEARCH

 Hide other user’s processes
 Use CAP module’s process hiding
 Kernel parameter rsbac_cap_process_hiding.

 12.8 Special RSBAC Goodies II

 Secure delete for sensitive data
 Use FF flag secure_delete or RC FD type attribute

 AUTH learning mode
 Let system learn required AUTH capabilities.

 ACL learning mode
 Add missing ACLs for single users and objects automatically

 Separate logging source
 Use rsbac_nosyslog and rklogd to log invisible from root

 TTL-Settings
 Use lifetime limits for many AUTH, RC and ACL settings.

 13 Sample System

 13.1 Select Simple Server Type:
 Webserver, Proxy Server, Mail or File Server?

 13.2 Specify Requirements
 Filesystem Structure
 Executables
 Libraries
 Configuration Files
 Kernel Objects
 Devices
 Authentication data
 Network Resources
 Other Objects.

 13 Sample Configuration

 13.3 Select Models

 13.4 Design a Configuration

 13.5 Implement It.

 14 Improvement Discussion

 14.1 Outlook on v1.2.4
 14.2 ???

 14.1 Outlook on v1.2.4

 Kernel space user management
 Full passwd/shadow compatible
 Fine grained access control by all modules
 Checking and account logic in kernel only
 PAM and NSS modules for easy usage
 Authentication enforcement: only setuid to authenticated uids
 => Finally taking user control away from ordinary programs

 AUTH daemon for more secure network authentication
 Alternative to kernel based user management

 Improved learning modes

 Many small changes (see online to-do list)

 ???

 14.2 Improvements: ???

 ???

 15 Ending It Up

 15.1 Conclusion: What We Learned

 15.2 How to Go On

 15.3 Final Questions.

Rule Set Based Access Control (RSBAC)

Linux Kongress 2004 - One Day Workshop

Amon Ott <ao@rsbac.org>

Thank you!

